0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MT49H8M36FM-5 TR

MT49H8M36FM-5 TR

  • 厂商:

    MICRON(镁光)

  • 封装:

    TFBGA144

  • 描述:

    IC DRAM 288MBIT PARALLEL 144UBGA

  • 数据手册
  • 价格&库存
MT49H8M36FM-5 TR 数据手册
288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Features CIO RLDRAM® 2 MT49H32M9 – 32 Meg x 9 x 8 Banks MT49H16M18 – 16 Meg x 18 x 8 Banks MT49H8M36 – 8 Meg x 36 x 8 Banks Features Options1 • 533 MHz DDR operation (1.067 Gb/s/pin data rate) • 38.4 Gb/s peak bandwidth (x36 at 533 MHz clock frequency) • Organization – 32 Meg x 9, 16 Meg x 18, and 8 Meg x 36 • 8 internal banks for concurrent operation and maximum bandwidth • Reduced cycle time (15ns at 533 MHz) • Nonmultiplexed addresses (address multiplexing option available) • SRAM-type interface • Programmable READ latency (RL), row cycle time, and burst sequence length • Balanced READ and WRITE latencies in order to optimize data bus utilization • Data mask for WRITE commands • Differential input clocks (CK, CK#) • Differential input data clocks (DKx, DKx#) • On-die DLL generates CK edge-aligned data and output data clock signals • Data valid signal (QVLD) • 32ms refresh (8K refresh for each bank; 64K refresh command must be issued in total each 32ms) • 144-ball µBGA package • HSTL I/O (1.5V or 1.8V nominal) • 25–60 matched impedance outputs • 2.5V VEXT, 1.8V VDD, 1.5V or 1.8V VDDQ I/O • On-die termination (ODT) RTT PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D1.fm - Rev. O 10/12 EN Marking • Clock cycle timing – 1.875ns @ tRC = 15ns -18 t – 2.5ns @ RC = 15ns -25E t – 2.5ns @ RC = 20ns -25 t – 3.3ns @ RC = 20ns -33 – 5.0ns @ tRC = 20ns -5 • Configuration – 32 Meg x 9 32M9 – 16 Meg x 18 16M18 – 8 Meg x 36 8M36 • Operating temperature – Commercial (0° to +95°C) – Industrial (TC = –40°C to +95°C; TA = –40°C to +85°C) None IT • Package – 144-ball µBGA FM – 144-ball µBGA (Pb-free) BM • Revision :B Notes: 1. Not all options listed can be combined to define an offered product. Use the part catalog search on www.micron.com for available offerings. 1 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Features Figure 1: 288Mb RLDRAM 2 CIO Part Numbers Example Part Number: MT 4 9 H1 6 M1 8 FM-2 5 :B Configuration I/O Package MT49H : Speed Temp Revision I/O Common None Configuration Separate Rev. C Rev. A None Rev. B :B 32 Meg x 9 32M9 16 Meg x 18 16M18 Temperature 8 Meg x 36 8M36 Commercial Industrial Package 144-ball µBGA FM Speed Grade 144-ball µBGA (Pb-free) BM -18 None IT tCK = 1.875ns -25E tCK = 2.5ns -25 tCK = 2.5ns -33 tCK = 3.3ns -5 tCK = 5ns BGA Part Marking Decoder Due to space limitations, BGA-packaged components have an abbreviated part marking that is different from the part number. Micron’s BGA Part Marking Decoder is available on Micron’s Web site at micron.com. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D1.fm - Rev. O 10/12 EN 2 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Table of Contents Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 BGA Part Marking Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Ball Assignments and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Electrical Specifications – IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Electrical Specifications – AC and DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 AC and DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Input Slew Rate Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Temperature and Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 MODE REGISTER SET (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 AUTO REFRESH (AREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 IEEE 1149.1 Serial Boundary Scan (JTAG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Disabling the JTAG Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Test Access Port (TAP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 TAP Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Performing a TAP RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 TAP Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 TAP Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_CIOTOC.fm - Rev. O 10/12 EN 3 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 List of Figures List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Figure 41: Figure 42: Figure 43: Figure 44: Figure 45: 288Mb RLDRAM 2 CIO Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 32 Meg x 9 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 16 Meg x 18 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 8 Meg x 36 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 144-Ball µBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Nominal tAS/tCS/tDS and tAH/tCH/tDH Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Example Temperature Test Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Mode Register Definition in Nonmultiplexed Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Read Burst Lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 On-Die Termination-Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 WRITE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 READ Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 AUTO REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Power-Up/Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Power-Up/Initialization Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 WRITE Burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Consecutive WRITE-to-WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 WRITE-to-READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 WRITE-to-READ (Separated by Two NOPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 WRITE – DM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Basic READ Burst Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Consecutive READ Bursts (BL = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Consecutive READ Bursts (BL = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 READ-to-WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Read Data Valid Window for x9 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Read Data Valid Window for x18 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Read Data Valid Window for x36 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 AUTO REFRESH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 READ Burst with ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 READ-NOP-READ with ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Command Description in Multiplexed Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Power-Up/Initialization Sequence in Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Mode Register Definition in Multiplexed Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 BURST REFRESH Operation with Multiplexed Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Consecutive WRITE Bursts with Multiplexed Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 WRITE-to-READ with Multiplexed Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Consecutive READ Bursts with Multiplexed Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 READ-to-WRITE with Multiplexed Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 TAP Controller State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 TAP Controller Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 JTAG Operation – Loading Instruction Code and Shifting Out Data. . . . . . . . . . . . . . . . . . . . . . . . . . . .73 TAP Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 RLDRAM_CIOLOF.fm - 10/12 EN 4 Micron Technology, Inc., reserves the right to change products or specifications without notice. © Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 List of Tables List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Table 23: Table 24: Table 25: Table 26: Table 27: Table 28: Table 29: Table 30: 32 Meg x 9 Ball Assignments (Top View) 144-Ball µBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 16 Meg x 18 Ball Assignments (Top View) 144-Ball µBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 8 Meg x 36 Ball Assignments (Top View) 144-Ball µBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 IDD Operating Conditions and Maximum Limits – Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 IDD Operating Conditions and Maximum Limits – Rev. B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Input AC Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Differential Input Clock Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Address and Command Setup and Hold Derating Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Data Setup and Hold Derating Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Capacitance – µBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 AC Electrical Characteristics: -18, -25E, -25, -33, -5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Temperature Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Thermal Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Command Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Cycle Time and READ/WRITE Latency Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Address Widths at Different Burst Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 On-Die Termination DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 288Mb Address Mapping in Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Cycle Time and READ/WRITE Latency Configuration Table in Multiplexed Mode . . . . . . . . . . . . . .63 TAP Input AC Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 TAP AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 TAP DC Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Identification Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Scan Register Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Boundary Scan (Exit) Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_CIOLOT.fm - Rev. O 10/12 EN 5 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 General Description General Description The Micron® reduced latency DRAM (RLDRAM®) 2 is a high-speed memory device designed for high bandwidth data storage—telecommunications, networking, and cache applications, etc. The chip’s 8-bank architecture is optimized for sustainable high speed operation. The DDR I/O interface transfers two data words per clock cycle at the I/O balls. Output data is referenced to the free-running output data clock. Commands, addresses, and control signals are registered at every positive edge of the differential input clock, while input data is registered at both positive and negative edges of the input data clock(s). Read and write accesses to the RLDRAM are burst-oriented. The burst length (BL) is programmable from 2, 4, or 8 by setting the mode register. The device is supplied with 2.5V and 1.8V for the core and 1.5V or 1.8V for the output drivers. Bank-scheduled refresh is supported with the row address generated internally. The µBGA 144-ball package is used to enable ultra high-speed data transfer rates and a simple upgrade path from early generation devices. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 6 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 State Diagram State Diagram Figure 2: Simplified State Diagram Initialization sequence DSEL/NOP WRITE READ MRS AREF Automatic sequence Command sequence PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 7 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Functional Block Diagrams Figure 3: 32 Meg x 9 Functional Block Diagram ZQ ZQ CAL Output drivers ODT control CK CK# Control logic WE# VTT Mode register Refresh counter Bank 7 Bank 6 Bank 5 Bank 4 Bank 3 Bank 2 Bank 1 Bank 0 13 Rowaddress MUX 18 13 13 Bank 0 rowaddress latch and decoder RTT ODT control CK/CK# 8,192 Bank 0 memory array (8,192 x 32 x 16 x 9)2 DLL ZQ CAL 144 8 SENSEamplifiers AMPLIFIERS Sense READ n logic n 9 9 (0 ....8) 9 Drivers DQ latch QVLD QK0/QK0# 2 QK/QK# generator 8,192 144 DQ0–DQ8 BA0–BA2 24 Address register Bank control logic 3 31 I/O gating DQM mask logic 8 8 32 144 5 8 81 Columnaddress counter/ latch Column decoder WRITE FIFO n and drivers n DK/DK# 2 9 Input logic Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. A0–A201 9 RCVRS 9 CLK in VTT 81 RTT 31 ODT control DM Notes: 1. Examples for BL = 2; column address will be reduced with an increase in burst length. 2. The “16” = (length of burst) x 2^(number of column addresses to WRITE FIFO and READ logic). 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 State Diagram Command decode CS# REF# ZQ ZQ CAL Output drivers ODT control CK CK# CS# Command decode PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Figure 4: 16 Meg x 18 Functional Block Diagram REF# WE# Control logic VTT 13 Rowaddress MUX 18 13 13 Bank 0 rowaddress latch and decoder RTT ODT control CK/CK# 8,192 Bank 0 memory array (8,192 x 32 x 8 x 18)2 (0 ....17) DLL ZQ CAL 18 144 Sense SENSEamplifiers AMPLIFIERS READ n logic n 18 18 Drivers DQ latch 4 QVLD QK0–QK1/ QK0#–QK1# QK/QK# generator 8,192 144 9 DQ0–DQ17 23 Bank control logic Address register 3 8 8 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 144 5 8 71 Columnaddress counter/ latch DK/DK# 2 32 Column decoder WRITE FIFO and drivers n n 18 Input logic A0–A191 BA0–BA2 21 I/O gating DQM mask logic 18 18 RCVRS VTT CLK in 71 RTT 21 ODT control DM Notes: 1. Examples for BL = 2; column address will be reduced with an increase in burst length. 2. The “8” = (length of burst) x 2^(number of column addresses to WRITE FIFO and READ logic). 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 State Diagram Mode register Refresh counter Bank 7 Bank 6 Bank 5 Bank 4 Bank 3 Bank 2 Bank 1 Bank 0 ZQ ZQ CAL Output drivers ODT control CK CK# CS# Control logic Command decode PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Figure 5: 8 Meg x 36 Functional Block Diagram REF# WE# VTT 18 13 Rowaddress MUX 13 13 Bank 0 rowaddress latch and decoder RTT ODT control CK/CK# 8,192 Bank 0 memory array (8,192 x 32 x 4 x 36)2 DLL ZQ CAL 144 READ n logic n 36 36 DQ latch (0 ....35) 36 Drivers SENSE AMPLIFIERS Sense amplifiers 4 QVLD QK0–QK1/ QK0#–QK1# QK/QK# generator 8,192 10 144 DQ0–DQ35 22 Address register Bank control logic 3 8 8 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 32 144 5 8 61 Columnaddress counter/ latch WRITE FIFO and drivers CLK in Column decoder DK0–DK1/ DK0#–DK1# 4 n n 36 36 Input logic A0–A181 BA0–BA2 11 I/O gating DQM mask logic 36 RCVRS VTT 61 RTT 11 ODT control DM Notes: 1. Examples for BL = 2; column address will be reduced with an increase in burst length. 2. The “4” = (length of burst) x 2^(number of column addresses to WRITE FIFO and READ logic). 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 State Diagram Mode register Refresh counter Bank 7 Bank 6 Bank 5 Bank 4 Bank 3 Bank 2 Bank 1 Bank 0 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Ball Assignments and Descriptions Ball Assignments and Descriptions Table 1: A B C D E F G H J K L M N P R T U V 32 Meg x 9 Ball Assignments (Top View) 144-Ball µBGA 1 2 3 4 VREF VDD VTT A221 A212 A5 A8 B2 NF3 DK REF# WE# A18 A15 VSS VTT VDD VREF VSS DNU4 DNU4 DNU4 DNU4 DNU4 A6 A9 NF3 DK# CS# A16 DNU4 DNU4 DNU4 DNU4 DNU4 ZQ VEXT DNU4 DNU4 DNU4 DNU4 DNU4 A7 VSS VDD VDD VSS A17 DNU4 DNU4 DNU4 DNU4 DNU4 VEXT VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 5 6 7 8 9 10 11 12 VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS VEXT DQ0 DQ1 QK0# DQ2 DQ3 A2 VSS VDD VDD VSS A12 DQ4 DQ5 DQ6 DQ7 DQ8 VEXT TMS DNU4 DNU4 QK0 DNU4 DNU4 A1 A4 B0 B1 A14 A11 DNU4 DNU4 DNU4 DNU4 DNU4 TDO TCK VDD VTT VSS A20 QVLD A0 A3 CK CK# A13 A10 A19 DM VSS VTT VDD TDI 1. Reserved for future use. This signal is not connected. 2. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. 3. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to GND. 4. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to GND. Note that if ODT is enabled on Rev. A die, these pins will be connected to VTT. The DNU pins are High-Z on Rev. B die when ODT is enabled. 11 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Ball Assignments and Descriptions Table 2: A B C D E F G H J K L M N P R T U V 16 Meg x 18 Ball Assignments (Top View) 144-Ball µBGA 1 2 3 4 VREF VDD VTT A221 A212 A5 A8 B2 NF3 DK REF# WE# A18 A15 VSS VTT VDD VREF VSS DNU4 DNU4 DNU4 DNU4 DNU4 A6 A9 NF3 DK# CS# A16 DNU4 DNU4 QK1 DNU4 DNU4 ZQ VEXT DQ4 DQ5 DQ6 DQ7 DQ8 A7 VSS VDD VDD VSS A17 DQ14 DQ15 QK1# DQ16 DQ17 VEXT VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 5 6 7 8 9 10 11 12 VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS VEXT DQ0 DQ1 QK0# DQ2 DQ3 A2 VSS VDD VDD VSS A12 DQ9 DQ10 DQ11 DQ12 DQ13 VEXT TMS DNU4 DNU4 QK0 DNU4 DNU4 A1 A4 B0 B1 A14 A11 DNU4 DNU4 DNU4 DNU4 DNU4 TDO TCK VDD VTT VSS A202 QVLD A0 A3 CK CK# A13 A10 A19 DM VSS VTT VDD TDI 1. Reserved for future use. This may optionally be connected to GND. 2. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to GND. 3. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to GND. 4. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to GND. Note that if ODT is enabled on Rev. A die, these pins will be connected to VTT. The DNU pins are High-Z on Rev. B die when ODT is enabled. 12 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Ball Assignments and Descriptions Table 3: A B C D E F G H J K L M N P R T U V 8 Meg x 36 Ball Assignments (Top View) 144-Ball µBGA 1 2 3 4 VREF VDD VTT A22 A212 A5 A8 B2 DK0 DK1 REF# WE# A18 A15 VSS VTT VDD VREF VSS DQ8 DQ10 DQ12 DQ14 DQ16 A6 A9 DK0# DK1# CS# A16 DQ24 DQ22 QK1 DQ20 DQ18 ZQ VEXT DQ9 DQ11 DQ13 DQ15 DQ17 A7 VSS VDD VDD VSS A17 DQ25 DQ23 QK1# DQ21 DQ19 VEXT VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 5 6 7 8 9 10 11 12 VSS VSSQ VDDQ VSSQ VDDQ VSSQ VDD VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS VEXT DQ1 DQ3 QK0# DQ5 DQ7 A2 VSS VDD VDD VSS A12 DQ35 DQ33 DQ31 DQ29 DQ27 VEXT TMS DQ0 DQ2 QK0 DQ4 DQ6 A1 A4 B0 B1 A14 A11 DQ34 DQ32 DQ30 DQ28 DQ26 TDO TCK VDD VTT VSS A202 QVLD A0 A3 CK CK# A13 A10 A192 DM VSS VTT VDD TDI 1. Reserved for future use. This may optionally be connected to GND. 2. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to GND. 13 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Ball Assignments and Descriptions Table 4: Ball Descriptions Symbol Type A0–A20 Input BA0–BA2 CK, CK# CS# DK, DK# DM TCK TMS, TDI WE#, REF# DQ0–DQ35 ZQ QKx, QKx# QVLD TDO VDD VDDQ VEXT VREF VSS VSSQ VTT A21 A22 Description Address inputs: A0–A20 define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings. They are sampled at the rising edge of CK. Input Bank address inputs: Select to which internal bank a command is being applied. Input Input clock: CK and CK# are differential input clocks. Addresses and commands are latched on the rising edge of CK. CK# is ideally 180 degrees out of phase with CK. Input Chip select: CS# enables the command decoder when LOW and disables it when HIGH. When the command decoder is disabled, new commands are ignored, but internal operations continue. Input Input data clock: DK and DK# are the differential input data clocks. All input data is referenced to both edges of DK. DK# is ideally 180 degrees out of phase with DK. For the x36 device, DQ0– DQ17 are referenced to DK0 and DK0# and DQ18–DQ35 are referenced to DK1 and DK1#. For the x9 and x18 devices, all DQs are referenced to DK and DK#. All DKx and DKx# pins must always be supplied to the device. Input Input data mask: The DM signal is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH. DM is sampled on both edges of DK (DK1 for the x36 configuration). Tie signal to ground if not used. Input IEEE 1149.1 clock input: This ball must be tied to VSS if the JTAG function is not used. Input IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used. Input Command inputs: Sampled at the positive edge of CK, WE# and REF# define (together with CS#) the command to be executed. I/O Data input: The DQ signals form the 36-bit data bus. During READ commands, the data is referenced to both edges of QKx. During WRITE commands, the data is sampled at both edges of DK. Reference External impedance (25–60): This signal is used to tune the device outputs to the system data bus impedance. DQ output impedance is set to 0.2 × RQ, where RQ is a resistor from this signal to ground. Connecting ZQ to GND invokes the minimum impedance mode. Connecting ZQ to VDD invokes the maximum impedance mode. Refer to the Mode Register Definition in Nonmultiplexed Address Mode figure to activate this function. Output Output data clocks: QKx and QKx# are opposite polarity, output data clocks. They are freerunning, and during READs, are edge-aligned with data output from the RLDRAM. QKx# is ideally 180 degrees out of phase with QKx. For the x36 device, QK0 and QK0# are aligned with DQ0–DQ17, and QK1 and QK1# are aligned with DQ18–DQ35. For the x18 device, QK0 and QK0# are aligned with DQ0–DQ8, while QK1 and QK1# are aligned with Q9–Q17. For the x9 device, all DQs are aligned with QK0 and QK0#. Output Data valid: The QVLD pin indicates valid output data. QVLD is edge-aligned with QKx and QKx#. Output IEEE 1149.1 test output: JTAG output. This ball may be left as no connect if the JTAG function is not used. Supply Power supply: Nominally, 1.8V. See Table 8 on page 20 for range. Supply DQ power supply: Nominally, 1.5V or 1.8V. Isolated on the device for improved noise immunity. See Table 8 on page 20 for range. Supply Power supply: Nominally, 2.5V. See Table 8 on page 20 for range. Supply Input reference voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers. Supply Ground. Supply DQ ground: Isolated on the device for improved noise immunity. Supply Power supply: Isolated termination supply. Nominally, VDDQ/2. See Table 8 on page 20 for range. – Reserved for future use: This signal is internally connected and can be treated as an address input. – Reserved for future use: This signal is not connected and can be connected to ground. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 14 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Ball Assignments and Descriptions Table 4: Ball Descriptions (continued) Symbol Type Description DNU – NF – Do not use: These balls may be connected to ground. Note that if ODT is enabled on Rev. A die, these pins will be connected to VTT. The DNU pins are High-Z on Rev. B die when ODT is enabled. No function: These balls can be connected to ground. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 15 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Package Dimensions Package Dimensions Figure 6: 144-Ball µBGA 10.6 CTR 10º TYP Seating plane 0.12 A A 144X Ø0.51 Solder ball material: Eutectic (62% Sn, 36% Pb, 2% Ag) or SAC305 (96.5% Sn, 3% Ag, 0.5% Cu). Dimensions apply to solder balls post-reflow on Ø0.39 SMD ball pads. 0.73 ±0.1 0.49 ±0.05 12 11 10 9 Ball A1 ID 4 3 2 1 Ball A1 ID A B C D E F G H J 17 CTR K 18.5 ±0.1 18.1 CTR L M N P R T U 1 TYP V 0.8 TYP 1.2 MAX 0.34 MIN 8.8 CTR 11 ±0.1 Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 1. All dimensions are in millimeters. 16 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – IDD Electrical Specifications – IDD Table 5: IDD Operating Conditions and Maximum Limits – Rev. A Notes appear on page 19 Description Condition Standby current t Active standby current CS# = 1; No commands; Bank address incremented and half address/data change once every 4 clock cycles Operational current BL = 2; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; continuous data during WRITE commands BL = 4; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; Continuous data during WRITE commands BL = 8; Sequential bank access; Bank transitions once every tRC; half address transitions once every tRC; Read followed by write sequence; continuous data during WRITE commands Eight-bank cyclic refresh; Continuous address/ data; Command bus remains in refresh for all eight banks Operational current Operational current Burst refresh current CK = idle; All banks idle; No inputs toggling Distributed refresh current Single-bank refresh; Sequential bank access; Half address transitions once every tRC, continuous data Operating burst write current example BL = 2; Cyclic bank access; Half of address bits change every clock cycle; Continuous data; measurement is taken during continuous WRITE Operating burst write current example BL = 4; Cyclic bank access; Half of address bits change every 2 clock cycles; Continuous data; Measurement is taken during continuous WRITE Operating burst write current example BL = 8; Cyclic bank access; Half of address bits change every 4 clock cycles; continuous data; Measurement is taken during continuous WRITE Operating burst read current example BL = 2; Cyclic bank access; Half of address bits change every clock cycle; Measurement is taken during continuous READ Operating burst read current example BL = 4; Cyclic bank access; Half of address bits change every 2 clock cycles; Measurement is taken during continuous READ PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 17 Symbol -25 -33 -5 Units ISB1 (VDD) x9/x18 ISB1 (VDD) x36 ISB1 (VEXT) ISB2 (VDD) x9/x18 ISB2 (VDD) x36 ISB2 (VEXT) IDD1 (VDD) x9/x18 IDD1 (VDD) x36 IDD1 (VEXT) 48 48 26 288 288 26 348 374 41 48 48 26 233 233 26 305 343 36 48 48 26 189 189 26 255 292 36 mA IDD2 (VDD) x9/x18 IDD2 (VDD) x36 IDD2 (VEXT) 362 418 48 319 389 42 269 339 42 mA IDD3 (VDD) x9/x18 IDD3 (VDD) x36 IDD3 (VEXT) 408 n/a 55 368 n/a 48 286 n/a 48 mA IREF1 (VDD) x9/x18 IREF1 (VDD) x36 IREF1 (VEXT) IREF2 (VDD) x9/x18 IREF2 (VDD) x36 IREF2 (VEXT) IDD2W (VDD) x9/x18 IDD2W (VDD) x36 IDD2W (VEXT) IDD4W (VDD) x9/x18 IDD4W (VDD) X36 IDD4W (VEXT) IDD8W (VDD) x9/x18 IDD8W (VDD) x36 IDD8W (VEXT) IDD2R (VDD) x9/x18 IDD2R (VDD) x36 IDD2R (VEXT) IDD4R (VDD) x9/x18 IDD4R (VDD) x36 IDD4R (VEXT) 785 785 133 325 326 48 970 615 615 111 267 281 42 819 430 430 105 221 227 42 597 mA 990 100 779 914 90 609 676 69 439 mA 882 88 668 790 77 525 567 63 364 mA n/a 60 860 880 100 680 730 88 n/a 51 735 795 90 525 660 77 n/a 40 525 565 69 380 455 63 mA mA mA mA mA mA Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – IDD Table 5: IDD Operating Conditions and Maximum Limits – Rev. A Notes appear on page 19 Description Operating burst read current example Table 6: Condition BL = 8; Cyclic bank access; Half of address bits change every 4 clock cycles; Measurement is taken during continuous READ Symbol -25 -33 -5 Units IDD8R (VDD) x9/x18 IDD8R (VDD) x36 IDD8R (VEXT) 570 n/a 60 450 n/a 51 310 n/a 40 mA IDD Operating Conditions and Maximum Limits – Rev. B Notes appear on page 19 Description Condition Standby current tCK = idle; All banks idle; No inputs toggling Active standby current CS# = 1; No commands; Bank address incremented and half address/data change once every 4 clock cycles Operational current BL = 2; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; continuous data during WRITE commands BL = 4; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; Continuous data during WRITE commands BL = 8; Sequential bank access; Bank transitions once every tRC; half address transitions once every tRC; Read followed by write sequence; continuous data during WRITE commands Eight-bank cyclic refresh; Continuous address/data; Command bus remains in refresh for all eight banks Operational current Operational current Burst refresh current Distributed refresh current Single-bank refresh; Sequential bank access; Half address transitions once every tRC, continuous data Operating burst BL = 2; Cyclic bank access; Half of address write current bits change every clock cycle; Continuous example data; measurement is taken during continuous WRITE Operating burst BL = 4; Cyclic bank access; Half of address write current bits change every 2 clock cycles; example Continuous data; Measurement is taken during continuous WRITE Operating burst BL = 8; Cyclic bank access; Half of address write current bits change every 4 clock cycles; example continuous data; Measurement is taken during continuous WRITE PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Symbol -18 -25E -25 -33 Units ISB1 (VDD) x9/x18 ISB1 (VDD) x36 ISB1 (VEXT) ISB2 (VDD) x9/x18 ISB2 (VDD) x36 ISB2 (VEXT) IDD1 (VDD) x9/x18 IDD1 (VDD) x36 IDD1 (VEXT) 55 55 5 250 250 5 310 320 10 55 55 5 215 215 5 285 295 10 55 55 5 215 215 5 260 270 10 55 55 5 190 190 5 225 230 10 mA IDD2 (VDD) x9/x18 IDD2 (VDD) x36 IDD2 (VEXT) 315 330 10 290 305 10 260 275 10 220 230 10 mA IDD3 (VDD) x9/x18 IDD3 (VDD) x36 IDD3 (VEXT) 330 390 15 305 365 15 275 320 15 230 265 15 mA IREF1 (VDD) x9/x18 IREF1 (VDD) x36 IREF1 (VEXT) IREF2 (VDD) x9/x18 IREF2 (VDD) x36 IREF2 (VEXT) IDD2W (VDD) x9/x18 IDD2W (VDD) x36 IDD2W (VEXT) IDD4W (VDD) x9/x18 IDD4W (VDD) X36 IDD4W (VEXT) IDD8W (VDD) x9/x18 IDD8W (VDD) x36 IDD8W (VEXT) 660 670 45 295 295 10 830 540 545 30 265 265 10 655 530 535 30 250 250 10 655 430 435 25 215 215 10 530 mA 885 40 580 700 35 465 700 35 465 565 30 385 mA 635 25 445 510 20 370 510 20 370 420 20 305 mA 560 25 455 20 455 20 375 20 18 mA mA mA mA Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – IDD Table 6: IDD Operating Conditions and Maximum Limits – Rev. B (continued) Notes appear on page 19 Description Condition Operating burst BL = 2; Cyclic bank access; Half of address read current bits change every clock cycle; example Measurement is taken during continuous READ Operating burst BL = 4; Cyclic bank access; Half of address read current bits change every 2 clock cycles; example Measurement is taken during continuous READ Operating burst BL = 8; Cyclic bank access; Half of address read current bits change every 4 clock cycles; example Measurement is taken during continuous READ Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Symbol -18 -25E -25 -33 Units IDD2R (VDD) x9/x18 IDD2R (VDD) x36 IDD2R (VEXT) 805 850 40 640 675 35 640 675 35 515 540 30 mA IDD4R (VDD) x9/x18 IDD4R (VDD) x36 IDD4R (VEXT) 545 590 25 440 475 20 440 475 20 365 390 20 mA IDD8R (VDD) x9/x18 IDD8R (VDD) x36 IDD8R (VEXT) 410 525 25 335 425 20 335 425 20 280 350 20 mA 1. IDD specifications are tested after the device is properly initialized. +0°C  TC  +95°C; +1.7V  VDD  +1.9V, +2.38V  VEXT  +2.63V, +1.4V  VDDQ  VDD, VREF = VDDQ/2. 2. tCK = tDK = MIN, tRC = MIN. 3. Input slew rate is specified in Table 9 on page 21. 4. Definitions for IDD conditions: 4a. LOW is defined as VIN  VIL(AC) MAX. 4b. HIGH is defined as VIN  VIH(AC) MIN. 4c. Stable is defined as inputs remaining at a HIGH or LOW level. 4d. Floating is defined as inputs at VREF = VDDQ/2. 4e. Continuous data is defined as half the DQ signals changing between HIGH and LOW every half clock cycle (twice per clock). 4f. Continuous address is defined as half the address signals changing between HIGH and LOW every clock cycle (once per clock). 4g. Sequential bank access is defined as the bank address incrementing by one every tRC. 4h. Cyclic bank access is defined as the bank address incrementing by one for each command access. For BL = 2 this is every clock, for BL = 4 this is every other clock, and for BL = 8 this is every fourth clock. 5. CS# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS# never transitions more than once per clock cycle. 6. IDD parameters are specified with ODT disabled. 7. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operations are tested for the full voltage range specified. 8. IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 2 V/ns in the range between VIL(AC) and VIH(AC). 19 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Electrical Specifications – AC and DC Absolute Maximum Ratings Stresses greater than those listed in Table 7 may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Table 7: Absolute Maximum Ratings Parameter Min Max Units I/O voltage Voltage on VEXT supply relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS –0.3 –0.3 –0.3 –0.3 VDDQ + 0.3 +2.8 +2.1 +2.1 V V V V AC and DC Operating Conditions Table 8: DC Electrical Characteristics and Operating Conditions Note 1 applies to the entire table; Unless otherwise noted: +0°C  TC  +95°C; +1.7V  VDD  +1.9V Description Conditions Symbol Supply voltage Supply voltage Isolated output buffer supply Reference voltage Termination voltage Input high (logic 1) voltage Input low (logic 0) voltage Output high current – – – – – – – VOH = VDDQ/2 VEXT VDD VDDQ VREF VTT VIH VIL IOH Output low current VOL = VDDQ/2 IOL 0V  VIN  VDD 0V  VIN  VDD 0V  VIN  VDDQ – ILC ILI ILO IREF Clock input leakage current Input leakage current Output leakage current Reference voltage current Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Min Max 2.38 2.63 1.7 1.9 1.4 VDD 0.49 × VDDQ 0.51 × VDDQ 0.95 × VREF 1.05 × VREF VREF + 0.1 VDDQ + 0.3 VSSQ - 0.3 VREF - 0.1 (VDDQ/2)/ (VDDQ/2)/ (1.15 × RQ/5) (0.85 × RQ/5) (VDDQ/2)/ (VDDQ/2)/ (1.15 × RQ/5) (0.85 × RQ/5) –5 5 –5 5 –5 5 –5 5 Units Notes V V V V V V V A 2 2, 3 4, 5, 6 7, 8 2 2 9, 10, 11 A 9, 10, 11 µA µA µA µA 1. All voltages referenced to VSS (GND). 2. Overshoot: VIH(AC)  VDD + 0.7V for t  tCK/2. Undershoot: VIL(AC)  –0.5V for t  tCK/2. During normal operation, VDDQ must not exceed VDD. Control input signals may not have pulse widths less than tCK/2 or operate at frequencies exceeding tCK (MAX). 3. VDDQ can be set to a nominal 1.5V ± 0.1V or 1.8V ± 0.1V supply. 4. Typically the value of VREF is expected to be 0.5 x VDDQ of the transmitting device. VREF is expected to track variations in VDDQ. 5. Peak-to-peak AC noise on VREF must not exceed ±2% VREF(DC). 6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise (non-common mode) on VREF may not exceed ±2% of the DC value. Thus, from VDDQ/2, VREF is allowed ±2% VDDQ/2 for DC error and an additional ±2% VDDQ/2 for AC noise. This measurement is to be taken at the nearest VREF bypass capacitor. 20 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC 7. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF. 8. On-die termination may be selected using mode register bit 9 (see the Mode Register Definition in Nonmultiplexed Address Mode figure). A resistance RTT from each data input signal to the nearest VTT can be enabled. RTT = 125–185 at 95°C TC. 9. IOH and IOL are defined as absolute values and are measured at VDDQ/2. IOH flows from the device, IOL flows into the device. 10. If MRS bit A8 is 0, use RQ = 250 in the equation in lieu of presence of an external impedance matched resistor. 11. For VOL and VOH, refer to the RLDRAM 2 HSPICE or IBIS driver models. Table 9: Input AC Logic Levels Notes 1–3 apply to entire table; Unless otherwise noted: +0°C  TC  +95°C; +1.7V  VDD  +1.9V Description Input high (logic 1) voltage Input low (logic 0) voltage Notes: Symbol Min Max Units VIH VIL VREF + 0.2 – – VREF - 0.2 V V 1. All voltages referenced to VSS (GND). 2. The AC and DC input level specifications are as defined in the HSTL standard (that is, the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level). 3. The minimum slew rate for the input signals used to test the device is 2 V/ns in the range between VIL(AC) and VIH(AC). See illustration below: VDDQ VIH(AC) MIN VSWING VIL(AC) MAX GND Rise time: 2 V/ns PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Fall time: 2 V/ns 21 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Table 10: Differential Input Clock Operating Conditions Notes 1–4 apply to the entire table; Unless otherwise noted: +0°C  TC  +95°C; +1.7V  VDD  +1.9V Parameter/Condition Clock input voltage level: CK and CK# Clock input differential voltage: CK and CK# Clock input differential voltage: CK and CK# Clock input crossing point voltage: CK and CK# Notes: Figure 7: Symbol Min Max Units Notes VIN(DC) VID(DC) VID(AC) VIX(AC) –0.3 0.2 0.4 VDDQ/2 - 0.15 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 VDDQ/2 + 0.15 V V V V 5 5 6 1. DKx and DKx# have the same requirements as CK and CK#. 2. All voltages referenced to VSS (GND). 3. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross. The input reference level for signals other than CK/CK# is VREF. 4. CK and CK# input slew rate must be 2 V/ns (4 V/ns if measured differentially). 5. VID is the magnitude of the difference between the input level on CK and the input level on CK#. 6. The value of VIX is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC level of the same. Clock Input VIN(DC) MAX Maximum clock level CK# X VDDQ/2 + 0.15 VIX(AC) MAX VDDQ/2 VDDQ/2A - 0.15 1 X VID(DC)2 VID(AC)3 VIX(AC) MIN CK Minimum clock level VIN(DC) MIN Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 1. 2. 3. 4. CK and CK# must cross within this region. CK and CK# must meet at least VID(DC) MIN when static and centered around VDDQ/2. Minimum peak-to-peak swing. It is a violation to tristate CK and CK# after the part is initialized. 22 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Input Slew Rate Derating Table 11 on page 24 and Table 12 on page 25 define the address, command, and data setup and hold derating values. These values are added to the default tAS/tCS/tDS and tAH/tCH/tDH specifications when the slew rate of any of these input signals is less than the 2 V/ns the nominal setup and hold specifications are based upon. To determine the setup and hold time needed for a given slew rate, add the tAS/tCS default specification to the “tAS/tCS VREF to CK/CK# Crossing” and the tAH/tCH default specification to the “tAH/tCH CK/CK# Crossing to VREF ” derated values on Table 11. The derated data setup and hold values can be determined in a like manner using the “tDS VREF to CK/CK# Crossing” and “tDH to CK/CK# Crossing to VREF ” values on Table 12. The derating values on Table 11 and Table 12 apply to all speed grades. The setup times on Table 11 and Table 12 represent a rising signal. In this case, the time from which the rising signal crosses VIH(AC) MIN to the CK/CK# cross point is static and must be maintained across all slew rates. The derated setup timing represents the point at which the rising signal crosses VREF(DC) to the CK/CK# cross point. This derated value is calculated by determining the time needed to maintain the given slew rate and the delta between VIH(AC) MIN and the CK/CK# cross point. The setup values in Table 11 and Table 12 are also valid for falling signals (with respect to VIL[AC] MAX and the CK/CK# cross point). The hold times in Table 11 and Table 12 represent falling signals. In this case, the time from the CK/CK# cross point to when the signal crosses VIH(DC) MIN is static and must be maintained across all slew rates. The derated hold timing represents the delta between the CK/CK# cross point to when the falling signal crosses VREF(DC). This derated value is calculated by determining the time needed to maintain the given slew rate and the delta between the CK/CK# cross point and VIH(DC). The hold values in Table 11 and Table 12 are also valid for rising signals (with respect to VIL[DC] MAX and the CK and CK# cross point). Note: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN The above descriptions also pertain to data setup and hold derating when CK/CK# are replaced with DK/DK#. 23 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Table 11: Address and Command Setup and Hold Derating Values t Command/ Address Slew Rate (V/ns) AS/ CS VREF to CK/CK# Crossing 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0 5 11 18 25 33 43 54 67 82 100 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 30 35 41 48 55 63 73 84 97 112 130 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 60 65 71 78 85 93 103 114 127 142 160 t t PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN AS/tCS VIH(AC) MIN to CK/CK# Crossing t t t AH/ CH CK/CK# Crossing to VREF CK, CK# Differential Slew Rate: 2.0 V/ns –100 0 –100 3 –100 6 –100 9 –100 13 –100 17 –100 22 –100 27 –100 34 –100 41 –100 50 CK, CK# Differential Slew Rate: 1.5 V/ns –70 30 –70 33 –70 36 –70 39 –70 43 –70 47 –70 52 –70 57 –70 64 –70 71 –70 80 CK, CK# Differential Slew Rate: 1.0 V/ns –40 60 –40 63 –40 66 –40 69 –40 73 –40 77 –40 82 –40 87 –40 94 –40 101 –40 110 24 AH/tCH CK/CK# Crossing to VIH(DC) MIN Units –50 –50 –50 –50 –50 –50 –50 –50 –50 –50 –50 ps ps ps ps ps ps ps ps ps ps ps –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 ps ps ps ps ps ps ps ps ps ps ps 10 10 10 10 10 10 10 10 10 10 10 ps ps ps ps ps ps ps ps ps ps ps Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Table 12: Data Setup and Hold Derating Values t t Data Slew Rate (V/ns) DS VREF to CK/CK# Crossing 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0 5 11 18 25 33 43 54 67 82 100 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 30 35 41 48 55 63 73 84 97 112 130 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 60 65 71 78 85 93 103 114 127 142 160 PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN t DS VIH(AC) MIN to CK/CK# Crossing t DH CK/CK# Crossing to VREF DK, DK# Differential Slew Rate: 2.0 V/ns –100 0 –100 3 –100 6 –100 9 –100 13 –100 17 –100 22 –100 27 –100 34 –100 41 –100 50 DK, DK# Differential Slew Rate: 1.5 V/ns –70 30 –70 33 –70 36 –70 39 –70 43 –70 47 –70 52 –70 57 –70 64 –70 71 –70 80 DK, DK# Differential Slew Rate: 1.0 V/ns –40 60 –40 63 –40 66 –40 69 –40 73 –40 77 –40 82 –40 87 –40 94 –40 101 –40 110 25 DH CK/CK# Crossing to VIH(DC) MIN Units –50 –50 –50 –50 –50 –50 –50 –50 –50 –50 –50 ps ps ps ps ps ps ps ps ps ps ps –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 ps ps ps ps ps ps ps ps ps ps ps 10 10 10 10 10 10 10 10 10 10 10 ps ps ps ps ps ps ps ps ps ps ps Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Figure 8: Nominal tAS/tCS/tDS and tAH/tCH/tDH Slew Rate VIH(AC) MIN VREF to DC VREF to DC region region VSWING (MAX) VREF to AC region VREF to AC region VDDQ VIH(DC) MIN VREF(DC) VIL(DC) MAX VIL(AC) MAX VSSQ Table 13: Capacitance – µBGA Notes 1–2 apply to entire table Description Address/control input capacitance Input/output capacitance (DQ, DM, and QK/QK#) Clock capacitance (CK/CK#, and DK/DK#) JTAG pins Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Symbol Conditions Min Max Units CI CO CCK CJTAG TA = 25°C; f = 100 MHz VDD = VDDQ = 1.8V 1.0 3.0 1.5 1.5 2.0 4.5 2.5 4.5 pF pF pF pF 1. Capacitance is not tested on ZQ pin. 2. JTAG pins are tested at 50 MHz. 26 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Table 14: AC Electrical Characteristics: -18, -25E, -25, -33, -5 Notes 1–4 (page 29) apply to the entire table -18 Description Symbol -25E -25 -33 -5 Min Max Min Max Min Max Min Max Min t CK 1.875 5.7 2.5 5.7 2.5 5.7 3.3 5.7 5.0 t DK t Max Units Notes Clock Input clock cycle time Input data clock cycle time Clock jitter: period Clock jitter: cycleto-cycle Clock HIGH time t JITPER t t –100 JITCC 100 t CK –150 200 150 t CK –150 300 150 t CK –200 300 200 ns CK –250 400 ns 250 ps 500 ps 5, 6 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 t 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK tCKDK –0.3 0.3 –0.45 0.5 –0.3 0.5 –0.3 1.0 –0.3 1.5 ns tMRSC 6 – 6 – 6 – 6 – 6 – tCK tAS/tCS 0.3 – 0.4 – 0.4 – 0.5 – 0.8 – ns tDS 0.17 – 0.25 – 0.25 – 0.3 – 0.4 – ns tAH/tCH 0.3 – 0.4 – 0.4 – 0.5 – 0.8 – ns tDH 0.17 – 0.25 – 0.25 – 0.3 – 0.4 – ns QKH 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 t tQKL 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 tCKL MIN (tQKH, tQKL) –0.2 – – 0.3 MIN (tQKH, tQKL) –0.5 – 0.25 MIN (tQKH, tQKL) –0.3 – 0.25 MIN (tQKH, tQKL) –0.25 – 0.2 MIN (tQKH, tQKL) –0.25 0.5 ns –0.12 0.12 –0.2 0.2 –0.2 0.2 –0.25 0.25 –0.3 0.3 ns 7 –0.22 0.22 –0.3 0.3 –0.3 0.3 –0.35 0.35 –0.4 0.4 ns 8 CKH, CK tDKH tCKL, Clock LOW time Clock to input data clock Mode register set cycle time to any command t CK 5.7 tDKL Setup Times Address/ command and input setup time Data-in and data mask to DK setup time Hold Times Address/ command and input hold time Data-in and data mask to DK hold time Data and Data Strobe t Output data clock HIGH time Output data clock LOW time Half-clock period QK edge to clock edge skew QK edge to output data edge QK edge to any output data edge t QHP tCKQK t QKQ0, CKH tQKQ1 tQKQ PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 27 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Table 14: AC Electrical Characteristics: -18, -25E, -25, -33, -5 (continued) Notes 1–4 (page 29) apply to the entire table -18 Description QK edge to QVLD Data valid window Symbol -25E -25 Min Max Min Max QKVLD tDVW –0.22 (tQKQx [MAX] + |tQKQx [MIN]|) 0.22 – –0.3 tQHP 0.3 – tREFI – 0.49 t tQHP (tQKQx [MAX] + |tQKQx [MIN]|) -33 -5 Min Max Min Max Min –0.3 0.3 – –0.35 (tQKQx [MAX] + |tQKQx [MIN]|) 0.35 – tQHP 0.49 – 0.49 tQHP (tQKQx [MAX] + |tQKQx [MIN]|) tQHP –0.4 (tQKQx [MAX] + |tQKQx [MIN]|) Max Units Notes 0.4 – ns 0.49 µs Refresh Average periodic refresh interval PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN – 0.49 – 28 – 9 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Electrical Specifications – AC and DC Notes 1. All timing parameters are measured relative to the crossing point of CK/CK#, DK/DK# and to the crossing point with VREF of the command, address, and data signals. 2. Outputs measured with equivalent load: VTT 50 DQ Test point 10pF 3. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operations are tested for the full voltage range specified. 4. AC timing may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 2 V/ns in the range between VIL(AC) and VIH(AC). 5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. 6. Frequency drift is not allowed. 7. tQKQ0 is referenced to DQ0–DQ17 for the x36 configuration and DQ0–DQ8 for the x18 configuration. tQKQ1 is referenced to DQ18–DQ35 for the x36 configuration and DQ9–DQ17 for the x18 configuration. 8. tQKQ takes into account the skew between any QKx and any Q. 9. To improve efficiency, eight AREF commands (one for each bank) can be posted to the RLDRAM on consecutive cycles at periodic intervals of 3.90µs. PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 29 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Temperature and Thermal Impedance Temperature and Thermal Impedance It is imperative that the RLDRAM device’s temperature specifications, shown in Table 15, are maintained in order to ensure that the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device’s thermal impedances correctly. The thermal impedances are listed for the available packages. Using thermal impedances incorrectly can produce significant errors. Read Micron technical note TN-00-08, “Thermal Applications” prior to using the thermal impedances listed in Table 15. For designs that are expected to last several years and require the flexibility to use several DRAM die shrinks, consider using final target theta values (rather than existing values) to account for increased thermal impedances from the die size reduction. The RLDRAM device’s safe junction temperature range can be maintained when the TC specification is not exceeded. In applications where the device’s ambient temperature is too high, use of forced air and/or heat sinks may be required in order to satisfy the case temperature specifications. Table 15: Temperature Limits Parameter Storage temperature Reliability junction temperature Operating junction temperature Operating case temperature Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN Commercial Industrial Commercial Industrial Commercial Industrial Symbol Min Max Units Notes TSTG TJ –55 – – 0 –40 0 –40 +150 +110 +110 +100 +100 +95 +95 C C C C C C C 1 2 2 3 3 4, 5 4, 5, 6 TJ TC 1. MAX storage case temperature; TSTG is measured in the center of the package, as shown in Figure 9 on page 31. This case temperature limit can be exceeded briefly during package reflow, as noted in Micron technical note TN-00-15. 2. Temperatures greater than 110°C may cause permanent damage to the device. This is a stress rating only and functional operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the reliability of the part. 3. Junction temperature depends upon package type, cycle time, loading, ambient temperature, and airflow. 4. MAX operating case temperature; TC is measured in the center of the package, as shown in Figure 9 on page 31. 5. Device functionality is not guaranteed if the device exceeds maximum TC during operation. 6. Both temperature specifications must be satisfied. 30 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Temperature and Thermal Impedance Table 16: Thermal Impedance Package Substrate JA (°C/W) Airflow = 0m/s JA (°C/W) Airflow = 1m/s JA (°C/W) Airflow = 2m/s JB (°C/W) JC (°C/W) Rev. A die 2-layer 4-layer 2-layer 4-layer 41.2 28.2 53.7 34.1 29.1 21.9 42.0 28.9 25.3 19.9 37.7 27.1 14.3 13.6 28.9 21.9 2.27 Rev. B die 3.9 Notes: Thermal impedance data is based on a number of samples from multiple lots and should be viewed as a typical number. Figure 9: Example Temperature Test Point Location Test point 18.50 9.25 5.50 11.00 PDF: 09005aef80a41b46/Source: 09005aef809f284b 288Mb_RLDRAM_2_CIO_D2.fm - Rev. O 10/12 EN 31 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2003 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands Commands The following table provides descriptions of the valid commands of the RLDRAM. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK. Table 17: Description of Commands Command DSEL/NOP MRS READ WRITE AREF Description Notes The NOP command is used to perform a no operation to the RLDRAM, which essentially deselects the chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history. The mode register is set via the address inputs A0–A17. See Figure 10 on page 34 for further information. The MRS command can only be issued when all banks are idle and no other operation is in progress. The READ command is used to initiate a burst read access to a bank. The value on the BA0– BA2 inputs selects the bank, and the address provided on inputs A0–An selects the data location within the bank. The WRITE command is used to initiate a burst write access to a bank. The value on the BA0–BA2 inputs selects the bank, and the address provided on inputs A0–An selects the data location within the bank. Input data appearing on the DQ is written to the memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored (that is, this part of the data word will not be written). The AREF command is used during normal operation of the RLDRAM to refresh the memory content of a bank. The command is nonpersistent, so it must be issued each time a refresh is required. The value on the BA0–BA2 inputs selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a “Don’t Care” during the AREF command. See “AUTO REFRESH (AREF)” on page 41 for more details. 1 Notes: Table 18: 2 2 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted. 2. n = 20. Command Table Notes 1–2 apply to the entire table Operation Device DESELECT/no operation MRS READ WRITE AUTO REFRESH Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. Code CS# WE# REF# A0–An2 BA0–BA2 Notes DSEL/NOP MRS READ WRITE AREF H L L L L X L H L H X L H H L X OPCODE A A X X X BA BA BA 3 4 4 X = “Don’t Care;” H = logic HIGH; L = logic LOW; A = valid address; BA = valid bank address. n = 20. Only A0–A17 are used for the MRS command. Address width varies with burst length; see the Address Widths at Different Burst Lengths table for details. 32 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands MODE REGISTER SET (MRS) The mode register set stores the data for controlling the operating modes of the memory. It programs the RLDRAM configuration, burst length, test mode, and I/O options. During an MRS command, the address inputs A0–A17 are sampled and stored in the mode register. After issuing a valid MRS command, tMRSC must be met before any command can be issued to the RLDRAM. This statement does not apply to the consecutive MRS commands needed for internal logic reset during the initialization routine. The MRS command can only be issued when all banks are idle and no other operation is in progress. Note: The data written by the prior burst length is not guaranteed to be accurate when the burst length of the device is changed. CK# CK CS# WE# REF# ADDRESS OPCODE BANK ADDRESS DON’T CARE PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 33 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands Figure 10: Mode Register Definition in Nonmultiplexed Address Mode A17 ... A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 17–10 9 8 7 6 5 Reserved1 ODT IM DLL NA2 AM 4 3 BL PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN On M7 0 Drive Impedance Internal 505 (default) 0 DLL Reset DLL reset4 (default) 1 External (ZQ) 1 DLL enabled M8 Notes: Off (default) 1 1. 2. 3. 4. 5. 2 1 0 Config Mode Register (Mx) M2 M1 M0 Configuration 0 0 0 13 (default) M9 On-Die Termination 0 Address Bus 0 0 1 13 0 1 0 2 0 1 1 3 1 0 0 43 1 0 1 5 1 1 0 Reserved 1 1 1 Reserved M4 M3 Burst Length M5 Address MUX 0 Nonmultiplexed (default) 0 0 2 (default) 1 Multiplexed 0 1 4 1 0 8 1 1 Reserved A10–A17 must be set to zero; A18–An = “Don’t Care.” A6 not used in MRS. BL = 8 is not available. DLL RESET turns the DLL off. ±30% temperature variation. 34 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands Configuration Tables Table 19 shows the different configurations that can be programmed into the mode register. The WRITE latency is equal to the READ latency plus one in each configuration in order to maximize data bus utilization. Bits M0, M1, and M2 are used to select the configuration during the MRS command. Table 19: Cycle Time and READ/WRITE Latency Configuration Table Notes 1 apply to the entire table Configuration 2 Parameter t RC RL tWL Valid frequency range t Notes: 1. 2. 3. 1 2 3 42, 3 5 4 4 5 266–175 6 6 7 400–175 8 8 9 533–175 3 3 4 200–175 5 5 6 333–175 Units t CK CK tCK MHz t tRC < 20ns in any configuration only available with -25E and -18 speed grades. BL = 8 is not available. The minimum tRC is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank. In this instance the minimum tRC is 4 cycles. Burst Length (BL) Burst length is defined by M3 and M4 of the mode register. Read and write accesses to the RLDRAM are burst-oriented, with the burst length being programmable to 2, 4, or 8. Figure 11 on page 36 illustrates the different burst lengths with respect to a READ command. Changes in the burst length affect the width of the address bus (see the Address Widths at Different Burst Lengths table for details). Note: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN The data written by the prior burst length is not guaranteed to be accurate when the burst length of the device is changed. 35 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands Figure 11: CK# Read Burst Lengths T0 T1 T2 T3 T4 T4n READ NOP NOP NOP NOP T5 T5n T6 T6n T7 T7n CK COMMAND ADDRESS NOP NOP NOP NOP Bank a, Col n RL = 4 QK# BL = 2 QK QVLD DO an DQ QK# BL = 4 QK QVLD DO an DQ QK# BL = 8 QK QVLD DO an DQ TRANSITIONING DATA Notes: Table 20: DON’T CARE 1. DO an = data-out from bank a and address an. 2. Subsequent elements of data-out appear after DO n. 3. Shown with nominal tCKQK. Address Widths at Different Burst Lengths Notes: Burst Length x9 x18 x36 2 4 8 A0–A20 A0–A19 A0–A18 A0–A19 A0–A18 A0–A17 A0–A18 A0–A17 A0–A161 1. Only available on Rev B die. Address Multiplexing Although the RLDRAM has the ability to operate with an SRAM interface by accepting the entire address in one clock, an option in the mode register can be set so that it functions with multiplexed addresses, similar to a traditional DRAM. In multiplexed address mode, the address can be provided to the RLDRAM in two parts that are latched into the memory with two consecutive rising clock edges. This provides the advantage of only PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 36 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands needing a maximum of 11 address balls to control the RLDRAM, reducing the number of signals on the controller side. The data bus efficiency in continuous burst mode is only affected when using the BL = 2 setting since the device requires two clocks to read and write the data. The bank addresses are delivered to the RLDRAM at the same time as the WRITE and READ command and the first address part, Ax. The Address Mapping in Multiplexed Address Mode table shows the addresses needed for both the first and second rising clock edges (Ax and Ay, respectively). The AREF command does not require an address on the second rising clock edge, as only the bank address is needed during this command. Because of this, AREF commands may be issued on consecutive clocks. The multiplexed address option is available by setting bit M5 to “1” in the mode register. Once this bit is set, the READ, WRITE, and MRS commands follow the format described in the Command Description in Multiplexed Address Mode table. Further information on operation with multiplexed addresses can be seen in the Multiplexed Address Mode section. DLL RESET DLL RESET is selected with bit M7 of the mode register as is shown in the Mode Register Definition in Nonmultiplexed Address Mode figure. The default setting for this option is LOW, whereby the DLL is disabled. Once M7 is set HIGH, 1,024 cycles (5µs at 200 MHz) are needed before a READ command can be issued. This time allows the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tCKQK parameter. A reset of the DLL is necessary if tCK or VDD is changed after the DLL has already been enabled. To reset the DLL, an MRS command must be issued where M7 is set LOW. After waiting tMRSC, a subsequent MRS command should be issued whereby M7 goes HIGH. 1,024 clock cycles are then needed before a READ command is issued. Drive Impedance Matching The RLDRAM 2 is equipped with programmable impedance output buffers. This option is selected by setting bit M8 HIGH during the MRS command. The purpose of the programmable impedance output buffers is to allow the user to match the driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the ZQ ball and Vss. The value of the resistor must be five times the desired impedance. For example, a 300 resistor is required for an output impedance of 60. The range of RQ is 125–300, which guarantees output impedance in the range of 25–60 (within 15%). Output impedance updates may be required because over time variations may occur in supply voltage and temperature. When the external drive impedance is enabled in the MRS, the device will periodically sample the value of RQ. An impedance update is transparent to the system and does not affect device operation. All data sheet timing and current specifications are met during an update. When bit M8 is set LOW during the MRS command, the RLDRAM provides an internal impedance at the output buffer of 50 (±30% with temperature variation). This impedance is also periodically sampled and adjusted to compensate for variation in supply voltage and temperature. PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 37 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands On-Die Termination (ODT) ODT is enabled by setting M9 to “1” during an MRS command. With ODT on, the DQs and DM are terminated to VTT with a resistance RTT. The command, address, QVLD, and clock signals are not terminated. Figure 12 on page 38 shows the equivalent circuit of a DQ receiver with ODT. The ODT function is dynamically switched off when a DQ begins to drive after a READ command is issued. Similarly, ODT is designed to switch on at the DQs after the RLDRAM has issued the last piece of data. The DM pin will always be terminated. See section entitled "Operations" on page 42 for relevant timing diagrams. Table 21: On-Die Termination DC Parameters Description Termination voltage On-die termination Notes: Figure 12: Symbol Min Max Units Notes VTT RTT 0.95 × VREF 125 1.05 × VREF 185 V  1, 2 3 1. All voltages referenced to VSS (GND). 2. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF. 3. The RTT value is measured at 95°C TC. On-Die Termination-Equivalent Circuit VTT SW RTT Receiver DQ PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 38 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands WRITE Write accesses are initiated with a WRITE command, as shown in Figure 13. The address needs to be provided during the WRITE command. During WRITE commands, data will be registered at both edges of DK according to the programmed burst length (BL). The RLDRAM operates with a WRITE latency (WL) that is one cycle longer than the programmed READ latency (RL + 1), with the first valid data registered at the first rising DK edge WL cycles after the WRITE command. Any WRITE burst may be followed by a subsequent READ command (assuming tRC is met). To avoid external data bus contention, at least one NOP command is needed between the WRITE and READ commands. Figure 20 on page 47 and Figure 21 on page 48 illustrate the timing requirements for a WRITE followed by a READ where one and two intermediary NOPs are required, respectively. Setup and hold times for incoming DQ relative to the DK edges are specified as tDS and tDH. The input data is masked if the corresponding DM signal is HIGH. The setup and hold times for the DM signal are also tDS and tDH. Figure 13: WRITE Command CK# CK CS# WE# REF# ADDRESS A BANK ADDRESS BA DON’T CARE PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 39 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands READ Read accesses are initiated with a READ command, as shown in Figure 14. Addresses are provided with the READ command. During READ bursts, the memory device drives the read data so it is edge-aligned with the QKx signals. After a programmable READ latency, data is available at the outputs. One half clock cycle prior to valid data on the read bus, the data valid signal, QVLD, transitions from LOW to HIGH. QVLD is also edge-aligned with the QKx signals. The skew between QK and the crossing point of CK is specified as tCKQK. tQKQ0 is the skew between QK0 and the last valid data edge generated at the DQ signals associated with QK0 (tQKQ0 is referenced to DQ0–DQ17 for the x36 configuration and DQ0–DQ8 for the x18 configuration). tQKQ1 is the skew between QK1 and the last valid data edge generated at the DQ signals associated with QK1 (tQKQ1 is referenced to DQ18–DQ35 for the x36 and DQ9–DQ17 for the x18 configuration). tQKQx is derived at each QKx clock edge and is not cumulative over time. tQKQ is defined as the skew between either QK differential pair and any output data edge. After completion of a burst, assuming no other commands have been initiated, output data (DQ) will go High-Z. The QVLD signal transitions LOW on the last bit of the READ burst. Note that if CK/CK# violates the VID(DC) specification while a READ burst is occurring, QVLD will remain HIGH until a dummy READ command is issued. The QK clocks are free-running and will continue to cycle after the read burst is complete. Back-toback READ commands are possible, producing a continuous flow of output data. The data valid window is derived from each QK transition and is defined as: tQHP - (tQKQ [MAX] + |tQKQ [MIN]|). See Figures 27–29 for illustration. Any READ burst may be followed by a subsequent WRITE command. Figure 26 on page 52 illustrate the timing requirements for a READ followed by a WRITE. Some systems having long line lengths or severe skews may need additional idle cycles inserted between READ and WRITE commands to prevent data bus contention. Figure 14: READ Command CK# CK CS# WE# REF# ADDRESS A BANK ADDRESS BA DON’T CARE PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 40 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Commands AUTO REFRESH (AREF) AREF is used to perform a REFRESH cycle on one row in a specific bank. Because the row addresses are generated by an internal refresh counter for each bank, the external address balls are “Don’t Care.” The bank addresses must be provided during the AREF command. The bank address is needed during the AREF command so refreshing of the part can effectively be hidden behind commands to other banks. The delay between the AREF command and a subsequent command to the same bank must be at least tRC. Within a period of 32ms (tREF), the entire device must be refreshed.For the 288Mb device, the RLDRAM requires 64K cycles at an average periodic interval of 0.49µs MAX (actual periodic refresh interval is 32ms/8K rows/8 banks = 0.488µs). To improve efficiency, eight AREF commands (one for each bank) can be posted to the RLDRAM at periodic intervals of 3.9µs (32ms/8K rows = 3.90µs). Figure 30 on page 56 illustrates an example of a refresh sequence. Figure 15: AUTO REFRESH Command CK# CK CS# WE# REF# ADDRESS BANK ADDRESS BA DON’T CARE PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 41 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Operations INITIALIZATION The RLDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operations or permanent damage to the device. The following sequence is used for power-up: 1. Apply power (VEXT, VDD, VDDQ, VREF, VTT) and start clock as soon as the supply voltages are stable. Apply VDD and VEXT before or at the same time as VDDQ.1 Apply VDDQ before or at the same time as VREF and VTT. Although there is no timing relation between VEXT and VDD, the chip starts the power-up sequence only after both voltages approach their nominal levels. CK/CK# must meet VID(DC) prior to being applied.2 Apply NOP conditions to command pins. Ensuring CK/CK# meet VID(DC) while applying NOP conditions to the command pins guarantees that the RLDRAM will not receive unwanted commands during initialization. 2. Maintain stable conditions for 200µs (MIN). 3. Issue at least three consecutive MRS commands: two or more dummies plus one valid MRS. The purpose of these consecutive MRS commands is to internally reset the logic of the RLDRAM. Note that tMRSC does not need to be met between these consecutive commands. It is recommended that all address pins are held LOW during the dummy MRS commands. 4. tMRSC after the valid MRS, an AUTO REFRESH command to all 8 banks (along with 1,024 NOP commands) must be issued prior to normal operation. The sequence of the eight AUTO REFRESH commands (with respect to the 1,024 NOP commands) does not matter. As is required for any operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank. Note that older versions of the data sheet required each of these AUTO REFRESH commands be separated by 2,048 NOP commands. This properly initializes the RLDRAM but is no longer required. Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. It is possible to apply VDDQ before VDD. However, when doing this, the DQs, DM, and all other pins with an output driver, will go HIGH instead of tri-stating. These pins will remain HIGH until VDD is at the same level as VDDQ. Care should be taken to avoid bus conflicts during this period. 2. If VID(DC) on CK/CK# can not be met prior to being applied to the RLDRAM, placing a large external resistor from CS# to VDD is a viable option for ensuring the command bus does not receive unwanted commands during this unspecified state. 42 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 16: Power-Up/Initialization Sequence VEXT VDD VDDQ VREF VTT T0 T1 tCK CK# CK tCKH T3 T2 tCKL T4 T5 T6 T8 T7 T9 (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) tDK DK# DK tDKH COMMAND tDKL NOP NOP NOP (( )) (( )) NOP MRS MRS MRS (( )) (( )) REF (( )) (( )) REF (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) VALID (( )) (( )) VALID DM (( )) (( )) ADDRESS (( )) (( )) BANK ADDRESS (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) DQ RTT High-Z 1,2 CODE T = 200µs (MIN) PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. 5. 2 CODE tMRSC Power-up: VDD and stable clock (CK, CK#) Notes: 1,2 CODE VALID Bank 0 (( )) (( )) Refresh all banks5 Bank 7 1,024 NOP commands Indicates a break in time scale DON’T CARE Recommend all address pins held LOW during dummy MRS commands. A10–A17 must be LOW. DLL must be reset if tCK or VDD are changed. CK and CK# must be separated at all times to prevent bogus commands from being issued. The sequence of the eight AUTO REFRESH commands (with respect to the 1,024 NOP commands) does not matter. As is required for any operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank. 43 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 17: Power-Up/Initialization Flow Chart Step Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1 VDD, and VEXT ramp 2 VDDQ ramp 3 Apply VREF and VTT 4 Apply stable CK/CK# and DK/DK# 5 Wait at least 200µs 6 Issue MRS command—A10–A17 must be LOW 7 Issue MRS command—A10–A17 must be LOW 8 Desired load mode register with A10–A17 LOW 9 Assert NOP for tMRSC 10 Issue AUTO REFRESH to bank 0 11 Issue AUTO REFRESH to bank 1 12 Issue AUTO REFRESH to bank 2 13 Issue AUTO REFRESH to bank 3 14 Issue AUTO REFRESH to bank 4 15 Issue AUTO REFRESH to bank 5 16 Issue AUTO REFRESH to bank 6 17 Issue AUTO REFRESH to bank 7 18 Wait 1,024 NOP commands1 19 Valid command Voltage rails can be applied simultaneously MRS commands must be on consecutive clock cycles 1. The sequence of the eight AUTO REFRESH commands (with respect to the 1,024 NOP commands) does not matter. As is required for any operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank. 44 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations WRITE Figure 18: WRITE Burst T0 T1 T2 T3 T4 T5 T5n COMMAND WRITE NOP NOP NOP NOP NOP ADDRESS Bank a, Add n T6 T6n T7 CK# CK tCKDK (NOM) NOP NOP WL = 5 DK# DK DI an DQ DM tCKDK (MIN) WL - tCKDK DK# DK DI an DQ DM tCKDK (MAX) WL + tCKDK DK# DK DI an DQ DM TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN DON’T CARE 1. DI an = data-in for bank a and address n; subsequent elements of burst are applied following DI an. 2. BL = 4. 45 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 19: Consecutive WRITE-to-WRITE T0 T1 T2 T3 WRITE NOP WRITE NOP T4 T5 T5n T6 T6n T7 T7n T8 T8n T9 CK# CK COMMAND ADDRESS Bank a, Add n Bank b, Add n WRITE NOP NOP NOP NOP NOP Bank a, Add n DK# DK t RC = 4 WL = 5 WL = 5 DI an DQ DI bn DI an DM TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN DON’T CARE 1. 2. 3. 4. DI an (or bn) = data-in for bank a (or b) and address n. Three subsequent elements of the burst are applied following DI for each bank. BL = 4. Each WRITE command may be to any bank; if the second WRITE is to the same bank, tRC must be met. 5. Nominal conditions are assumed for specifications not defined. 46 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 20: WRITE-to-READ T0 T1 T2 T3 T4 T5 COMMAND WRITE NOP READ NOP NOP NOP ADDRESS Bank a, Add n T5n T6 T6n T7 CK# CK NOP NOP Bank b, Add n WL = 5 RL = 4 QK# QK DK# DK QVLD DI an DQ DO bn DM DON’T CARE Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. 5. TRANSITIONING DATA DI an = data-in for bank a and address n. DO bn = data-out from bank b and address n. Two subsequent elements of each burst follow DI an and DO bn. BL = 2. Nominal conditions are assumed for specifications not defined. 47 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 21: WRITE-to-READ (Separated by Two NOPs) T0 T1 T2 T3 T4 T5 T5n COMMAND WRITE NOP NOP READ NOP NOP ADDRESS Bank a, Add n T6 T7 NOP NOP T7n T8 CK# CK NOP Bank b, Add n WL = 5 tCKQK (MIN) RL = 4 QK# QK DK# DK tCKDK (MAX) QVLD DI an DQ DO bn DM tDH tQKQ (MIN) TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN DON’T CARE 1. 2. 3. 4. 5. DI an = data-in for bank a and address n. DO bn = data-out from bank b and address n. One subsequent element of each burst follow both DI an and DO bn. BL = 2. Only one NOP separating the WRITE and READ would have led to contention on the data bus because of the input and output data timing conditions being used. 6. Nominal conditions are assumed for specifications not defined. 48 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 22: WRITE – DM Operation T1 T0 T2 T3 T4 NOP NOP T5 T6 T6n T7 T7n T8 CK# CK tCK COMMAND NOP WRITE tCH NOP tCL NOP NOP NOP NOP Bank a, Add n ADDRESS DK# DK tDKL WL = 5 tDKH DI an DQ DM tDS tDH TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. DON’T CARE DI an = data-in for bank a and address n. Subsequent elements of burst are provided on following clock edges. BL = 4. Nominal conditions are assumed for specifications not defined. 49 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations READ Figure 23: Basic READ Burst Timing T1 T0 T2 T3 T4 T5 NOP NOP T5n T6 T6n T7 CK# CK tCK COMMAND NOP READ tCH tCL NOP READ Bank a Add n ADDRESS NOP NOP Bank a Add n RL = 4 tRC = 4 DM tCKQK (MIN) tCKQK (MIN) QK# QK tQK tQKH tQKVLD tQKL tQKVLD QVLD DO an DQ tCKQK (MAX) tCKQK (MAX) QK# QK tQK tQKH tQKL QVLD DO an DQ TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. DON’T CARE DO an = data-out from bank a and address an. Three subsequent elements of the burst are applied following DO an. BL = 4. Nominal conditions are assumed for specifications not defined. 50 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 24: Consecutive READ Bursts (BL = 2) T5n T6n T0 T1 T2 T3 T4 COMMAND READ READ READ READ READ READ READ ADDRESS Bank a Add n Bank b Add n Bank c Add n Bank d Add n Bank e Add n Bank f Add n Bank g Add n CK# T4n T5 T6 CK RL = 4 QVLD QK# QK DO an DQ DO bn DO cn TRANSITIONING DATA Notes: Figure 25: DON’T CARE 1. 2. 3. 4. 5. DO an (or bn or cn) = data-out from bank a (or bank b or bank c) and address n. One subsequent element of the burst from each bank appears after each DO x. Nominal conditions are assumed for specifications not defined. Example applies only when READ commands are issued to same device. Bank address can be to any bank, but the subsequent READ can only be to the same bank if tRC has been met. 6. Data from the READ commands to bank d through bank g will appear on subsequent clock cycles that are not shown. Consecutive READ Bursts (BL = 4) T0 T1 T2 T3 T4 COMMAND READ NOP READ NOP READ ADDRESS Bank a Add n CK# T4n T5 T5n T6n T6 CK Bank b Add n NOP Bank c Add n READ Bank d Add n RL = 4 QVLD QK# QK DO an DQ TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN DO bn DON’T CARE 1. 2. 3. 4. 5. DO an (or bn) = data-out from bank a (or bank b) and address n. Three subsequent elements of the burst from each bank appears after each DO x. Nominal conditions are assumed for specifications not defined. Example applies only when READ commands are issued to same device. Bank address can be to any bank, but the subsequent READ can only be to the same bank if tRC has been met. 6. Data from the READ commands to banks c and d will appear on subsequent clock cycles that are not shown. 51 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 26: READ-to-WRITE T0 T1 T2 T3 T4 T5 T6 T7 T8 COMMAND READ NOP WRITE NOP NOP NOP NOP NOP NOP NOP ADDRESS Bank a, Add n CK# CK Bank b, Add n DM QK# QK DK# DK RL = 4 WL = RL + 1 = 5 QVLD DO an DQ DI bn TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. 5. DON’T CARE DO an = data-out from bank a and address n. DI bn = data-in for bank b and address n. Three subsequent elements of each burst follow DI bn and each DO an. BL = 4. Nominal conditions are assumed for specifications not defined. 52 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 27: Read Data Valid Window for x9 Device QK0# QK0 tQKQ0 (MAX)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MIN)2 tDVW3 tDVW3 tDVW3 tDVW3 DQ0 . . . . . . . . . . . . . . . DQ8 DQ (last valid data) DQ (first valid data) All DQs and QKs collectively Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. tQHP is defined as the lesser of tQKH or tQKL. is referenced to DQ0–DQ8. Minimum data valid window (tDVW) can be expressed as tQHP - (tQKQx [MAX] + |tQKQx [MIN]|). tQKQ0 53 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 28: Read Data Valid Window for x18 Device QK0# QK0 tQKQ0 (MAX)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MIN)2 DQ0 . . . . . . . . . . . . . . . DQ8 DQ (last valid data) DQ (first valid data) All DQs and QKs collectively tDVW3 tDVW3 tDVW3 tDVW3 QK1# QK1 tQKQ1 (MAX)4 tQHP1 tQKQ1 (MAX)4 tQKQ1 (MIN)4 tQHP1 tQKQ1 (MAX)4 tQKQ1 (MIN)4 tQHP1 tQKQ1 (MAX)4 tQKQ1 (MIN)4 tQHP1 tQKQ1 (MIN)4 DQ9 . . . . . . . . . . . . . . . DQ17 DQ (last valid data) DQ (first valid data) All DQs and QKs collectively tDVW3 Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN tDVW3 t t tDVW3 tDVW3 t 1. QHP is defined as the lesser of QKH or QKL. 2. tQKQ0 is referenced to DQ0–DQ8. 3. Minimum data valid window (tDVW) can be expressed as t QHP - (tQKQx [MAX] + |tQKQx [MIN]|). 4. tQKQ1 is referenced to DQ9–DQ17. 5. tQKQ takes into account the skew between any QKx and any DQ. 54 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 29: Read Data Valid Window for x36 Device QK0# QK0 tQKQ0 (MAX)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MAX)2 tQKQ0 (MIN)2 tQHP1 tQKQ0 (MIN)2 Lower word DQ0 . . . . . . . . . . . . . . . DQ17 DQ (last valid data) DQ (first valid data) All DQs and QKs collectively tDVW3 tDVW3 tDVW3 tDVW3 tQHP1 tQKQ1(MAX)4 tQKQ1(MIN)4 tQKQ1 (MIN)4 tDVW3 tDVW3 QK1# QK1 tQKQ1 (MAX)4 tQHP1 tQKQ1 (MAX)4 tQKQ1 (MIN)4 tQHP1 tQKQ1 (MAX)4 tQKQ1 (MIN)4 tQHP1 Upper word DQ18 . . . . . . . . . . . . . . . DQ35 DQ (last valid data) DQ (first valid data) All DQs and QKs collectively tDVW3 Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN tDVW3 1. tQHP is defined as the lesser of tQKH or tQKL. 2. tQKQ0 is referenced to DQ0–DQ17. 3. Minimum data valid window, tDVW, can be expressed as tQHP - (tQKQx [MAX] + |tQKQx [MIN]|). 4. tQKQ1 is referenced to DQ18–DQ35. 5. tQKQ takes into account the skew between any QKx and any DQ. 55 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations AUTO REFRESH Figure 30: AUTO REFRESH Cycle T0 T1 CK tCK COMMAND AREFx AREFy ADDRESS BANK BAx T2 (( )) CK# BAy (( )) T3 tCH ACx DQ DM tRC (( )) (( )) (( )) Indicates a break in time scale PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN ACy (( )) (( )) DK, DK# Notes: tCL DON’T CARE 1. AREFx = AUTO REFRESH command to bank x. 2. ACx = any command to bank x; ACy = any command to bank y. 3. BAx = bank address to bank x; BAy = bank address to bank y. 56 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations On-Die Termination Figure 31: CK# READ Burst with ODT T0 T1 T2 T3 T4 T4n READ NOP NOP NOP NOP T5 T5n T6 T6n T7 T7n CK COMMAND ADDRESS NOP NOP NOP NOP Bank a, Col n RL = 4 QK# BL = 2 QK QVLD DO an DQ DQ ODT DQ ODT on DQ ODT on DQ ODT off QK# BL = 4 QK QVLD DO an DQ DQ ODT DQ ODT on DQ ODT off DQ ODT on QK# BL = 8 QK QVLD DO an DQ DQ ODT off DQ ODT on DQ ODT TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN on DON’T CARE 1. DO an = data out from bank a and address n. 2. DO an is followed by the remaining bits of the burst. 3. Nominal conditions are assumed for specifications not defined. 57 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 32: READ-NOP-READ with ODT CK# T0 T1 T2 T3 T4 T4n READ NOP READ NOP NOP T5 T6 T6n NOP NOP T7 CK COMMAND Bank a, Col n ADDRESS NOP NOP Bank b, Col n RL = 4 QK# QK QVLD DO an DQ DQ ODT on DQ ODT DO bn DQ ODT on DQ ODT off DQ ODT on DQ ODT off TRANSITIONING DATA Notes: Figure 33: 1. 2. 3. 4. DON’T CARE DO an (or bn) = data-out from bank a (or bank b) and address n. BL = 2. One subsequent element of the burst appear after DO an and DO bn. Nominal conditions are assumed for specifications not defined. READ-to-WRITE with ODT T0 T1 T2 T3 T4 COMMAND READ WRITE NOP NOP NOP ADDRESS Bank a Add n Bank b Add n T4n T5 T6 NOP NOP T6n T7 T8 NOP NOP T9 CK# CK RL = 4 WL = 5 DKx# DKx DO an DQ DI bn QKx QKx# ODT ODT on ODT on ODT off TRANSITIONING DATA Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. UNDEFINED DON’T CARE DO an = data-out from bank a and address n; DI bn = data-in for bank b and address n. BL = 2. One subsequent element of each burst appears after each DO an and DI bn. Nominal conditions are assumed for specifications not defined. 58 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Multiplexed Address Mode Figure 34: Command Description in Multiplexed Address Mode READ WRITE MRS REF CK# CK CS# WE# REF# ADDRESS Ax BANK ADDRESS BA Ay Ax Ay Ax BA BA Ay BA DON’T CARE Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. The minimum setup and hold times of the two address parts are defined tAS and tAH. 59 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 35: Power-Up/Initialization Sequence in Multiplexed Address Mode VEXT VDD VDDQ VREF VTT T0 T1 tCK CK# CK tCKL tCKH T3 T2 T4 T5 T6 T7 T8 T9 T10 T11 (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) tDK DK# DK tDKH COMMAND NOP tDKL NOP NOP (( )) (( )) NOP MRS MRS MRS (( )) (( )) MRS NOP (( )) (( )) (( )) (( )) REF (( )) (( )) (( )) (( )) REF (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) 5 VALID (( )) (( )) VALID DM (( )) (( )) ADDRESS (( )) (( )) BANK ADDRESS (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) tMRSC tMRSC Refresh all banks9 1,024 NOP commands DQ RTT High-Z 1,2 CODE 1,2 CODE T = 200µs (MIN) 2,3 CODE (( )) (( )) Ax 2,4 Ay 2 5 VALID Bank 0 (( )) (( )) Bank 7 5 Power-up: VDD and stable clock (CK, CK#) Indicates a break in time scale Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN DON’T CARE 1. Recommended that all address pins held LOW during dummy MRS commands. 2. A10–A18 must be LOW. 3. Set address A5 HIGH. This enables the part to enter multiplexed address mode when in nonmultiplexed mode operation. Multiplexed address mode can also be entered at some later time by issuing an MRS command with A5 HIGH. Once address bit A5 is set HIGH, tMRSC must be satisfied before the two-cycle multiplexed mode MRS command is issued. 4. Address A5 must be set HIGH. This and the following step set the desired mode register once the RLDRAM is in multiplexed address mode. 5. Any command or address. 6. The above sequence must be followed in order to power up the RLDRAM in the multiplexed address mode. 7. DLL must be reset if tCK or VDD are changed. 8. CK and CK# must separated at all times to prevent bogus commands from being issued. 9. The sequence of the eight AUTO REFRESH commands (with respect to the 1,024 NOP commands) does not matter. As is required for any operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank. 60 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Figure 36: Mode Register Definition in Multiplexed Address Mode A5 A4 A3 A0 Ax A18 . . . A10 A9 A8 Ay A18 . . . A10 A9 A8 A4 A3 18–10 9 8 7 6 5 Reserved1 ODT IM DLL NA5 AM 4 3 2 BL 1 0 Mode Register (Mx) Config M2 M1 M0 0 Off (default) 0 0 0 Configuration 12 (default) 1 On 0 0 1 12 0 1 0 2 0 1 1 3 0 0 42 M9 On-Die Termination M8 Drive Impedance M7 DLL Reset 1 0 Internal 503 (default) 0 DLL reset4 (default) 1 0 1 5 External (ZQ) 1 DLL enabled 1 1 0 Reserved 1 1 1 Reserved 1 PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. 2. 3. 4. 5. 6. 7. Burst Length Address MUX 0 Nonmultiplexed (default) 0 0 2 (default) Multiplexed 0 1 4 1 0 8 1 1 Reserved 1 Notes: M4 M3 M5 Bits A10–A18 must be set to zero. BL = 8 is not available. ±30% temperature variation. DLL RESET turns the DLL off. Ay8 not used in MRS. BA0–BA2 are “Don’t Care.” Addresses A0, A3, A4, A5, A8, and A9 must be set as shown in order to activate the mode register in the multiplexed address mode. 61 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Address Mapping in Multiplexed Address Mode Table 22: 288Mb Address Mapping in Multiplexed Address Mode Data Width Burst Length x36 2 4 8 x18 2 4 8 x9 2 4 8 Address Ball A0 A3 A4 A5 A8 A9 A10 A13 A14 A17 A18 Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay A0 X A0 X A0 X A0 X A0 X A0 X A0 A20 A0 X A0 X A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A5 X A5 X A5 X A5 X A5 X A5 X A5 X A5 X A5 X A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A10 X A10 X A10 X A10 A19 A10 X A10 X A10 A19 A10 A19 A10 X A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A17 A16 A17 A16 X A16 A17 A16 A17 A16 A17 A16 A17 A16 A17 A16 A17 A16 A18 A15 X A15 X A15 A18 A15 A18 A15 X A15 A18 A15 A18 A15 A18 A15 Notes: PDF: 09005aef80a41b46/Source: 09005aef809f284b RLDRAM_2_CIO_Core.fm - Rev. D 10/12 EN 1. X = “Don’t Care.” 62 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 288Mb: x9, x18, x36 2.5V VEXT, 1.8V VDD, HSTL, CIO, RLDRAM 2 Operations Configuration Tables in Multiplexed Address Mode In multiplexed address mode, the read and write latencies are increased by one clock cycle. However, the RLDRAM cycle time remains the same as when in non-multiplexed address mode. Table 23: Cycle Time and READ/WRITE Latency Configuration Table in Multiplexed Mode Notes 1 apply to the entire table Configuration Parameter 1 t RC RL tWL Valid frequency range t Notes: 2 4 5 6 266–175 1. 2. 3. 2 3 42, 3 5 6 7 8 400–175 8 9 10 533–175 3 4 5 200–175 5 6 7 333–175 Units t CK CK tCK MHz t tRC
MT49H8M36FM-5 TR 价格&库存

很抱歉,暂时无法提供与“MT49H8M36FM-5 TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货